klf2ash317 Mutant Zebrafish Do Not Recapitulate Morpholino-Induced Vascular and Haematopoietic Phenotypes

نویسندگان

  • Peter Novodvorsky
  • Oliver Watson
  • Caroline Gray
  • Robert N. Wilkinson
  • Scott Reeve
  • Carl Smythe
  • Richard Beniston
  • Karen Plant
  • Richard Maguire
  • Alexander M. K. Rothman
  • Stone Elworthy
  • Fredericus J. M. van Eeden
  • Timothy J. A. Chico
  • Ramani Ramchandran
چکیده

INTRODUCTION AND OBJECTIVES The zinc-finger transcription factor Krϋppel-like factor 2 (KLF2) transduces blood flow into molecular signals responsible for a wide range of responses within the vasculature. KLF2 maintains a healthy, quiescent endothelial phenotype. Previous studies report a range of phenotypes following morpholino antisense oligonucleotide-induced klf2a knockdown in zebrafish. Targeted genome editing is an increasingly applied method for functional assessment of candidate genes. We therefore generated a stable klf2a mutant zebrafish and characterised its cardiovascular and haematopoietic development. METHODS AND RESULTS Using Transcription Activator-Like Effector Nucleases (TALEN) we generated a klf2a mutant (klf2ash317) with a 14bp deletion leading to a premature stop codon in exon 2. Western blotting confirmed loss of wild type Klf2a protein and the presence of a truncated protein in klf2ash317 mutants. Homozygous klf2ash317 mutants exhibit no defects in vascular patterning, survive to adulthood and are fertile, without displaying previously described morphant phenotypes such as high-output cardiac failure, reduced haematopoetic stem cell (HSC) development or impaired formation of the 5th accessory aortic arch. Homozygous klf2ash317 mutation did not reduce angiogenesis in zebrafish with homozygous mutations in von Hippel Lindau (vhl), a form of angiogenesis that is dependent on blood flow. We examined expression of three klf family members in wildtype and klf2ash317 zebrafish. We detected vascular expression of klf2b (but not klf4a or biklf/klf4b/klf17) in wildtypes but found no differences in expression that might account for the lack of phenotype in klf2ash317 mutants. klf2b morpholino knockdown did not affect heart rate or impair formation of the 5th accessory aortic arch in either wildtypes or klf2ash317 mutants. CONCLUSIONS The klf2ash317 mutation produces a truncated Klf2a protein but, unlike morpholino induced klf2a knockdown, does not affect cardiovascular development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zebrafish atoh8 mutants do not recapitulate morpholino phenotypes

Atoh8 is a bHLH transcription factor expressed in pancreas, skeletal muscle, the nervous system, and cardiovascular tissues during embryological development. Although it has been implicated in the regulation of pancreatic and endothelial cell differentiation, the phenotypic consequences of Atoh8 loss are uncertain. Conclusions from knockout studies in the mouse differ widely depending on the ta...

متن کامل

Comparison of Zebrafish tmem88a mutant and morpholino knockdown phenotypes

Tmem88a is a transmembrane protein that is thought to be a negative regulator of the Wnt signalling pathway. Several groups have used antisense morpholino oligonucleotides in an effort to characterise the role of tmem88a in zebrafish cardiovascular development, but they have not obtained consistent results. Here, we generate an 8 bp deletion in the coding region of the tmem88a locus using TALEN...

متن کامل

Correction: Zebrafish atoh8 mutants do not recapitulate morpholino phenotypes

[This corrects the article DOI: 10.1371/journal.pone.0171143.].

متن کامل

In vivo modeling of the morbid human genome using Danio rerio.

Here, we present methods for the development of assays to query potentially clinically significant nonsynonymous changes using in vivo complementation in zebrafish. Zebrafish (Danio rerio) are a useful animal system due to their experimental tractability; embryos are transparent to enable facile viewing, undergo rapid development ex vivo, and can be genetically manipulated. These aspects have a...

متن کامل

Generation and Characterization of Fmr1 Knockout Zebrafish

Fragile X syndrome (FXS) is one of the most common known causes of inherited mental retardation. The gene mutated in FXS is named FMR1, and is well conserved from human to Drosophila. In order to generate a genetic tool to study FMR1 function during vertebrate development, we generated two mutant alleles of the fmr1 gene in zebrafish. Both alleles produce no detectable Fmr protein, and produce ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015